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This study uses independent latent class analysis (LCA) and latent transition analysis

(LTA) to explore accurate diagnosis and disease status change of a big Alzheimer’s

disease Neuroimaging Initiative (ADNI) data of 2,132 individuals over a 3-year period. The

data includes clinical and neural measures of controls (CN), individuals with subjective

memory complains (SMC), early-onset mild cognitive impairment (EMCI), late-onset mild

cognitive impairment (LMCI), and Alzheimer’s disease (AD). LCA at each time point

yielded 3 classes: Class 1 is mostly composed of individuals from CN, SMC, and EMCI

groups; Class 2 represents individuals from LMCI and AD groups with improved scores

on memory, clinical, and neural measures; in contrast, Class 3 represents LMCI and

from AD individuals with deteriorated scores on memory, clinical, and neural measures.

However, 63 individuals from Class 1 were diagnosed as AD patients. This could be

misdiagnosis, as their conditional probability of belonging to Class 1 (0.65) was higher

than that of Class 2 (0.27) and Class 3 (0.08). LTA results showed that individuals had a

higher probability of staying in the same class over time with probability >0.90 for Class

1 and 3 and probability >0.85 for Class 2. Individuals from Class 2, however, transitioned

to Class 1 from time 2 to time 3 with a probability of 0.10. Other transition probabilities

were not significant. Lastly, further analysis showed that individuals in Class 2 whomoved

to Class 1 have different memory, clinical, and neural measures to other individuals in

the same class. We acknowledge that the proposed framework is sophisticated and

time-consuming. However, given the severe neurodegenerative nature of AD, we argue

that clinicians should prioritize an accurate diagnosis. Our findings show that LCA can

provide a more accurate prediction for classifying and identifying the progression of AD

compared to traditional clinical cut-off measures on neuropsychological assessments.
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INTRODUCTION

TheWorld Health Organization has identified Alzheimer’s disease (AD) as a public health priority,
with ∼30–35 million cases worldwide (World Health Organization, 2012). Alzheimer’s disease is
a chronic neurodegenerative syndrome which causes severe progressive deterioration in cognitive
impairment (Alzheimer Association, 2019). Impairments include detriments in memory, learning
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ability, language, judgment, decision making, and disordered
thinking (Alzheimer Association, 2019). Patients are diagnosed
with AD after being assessed on multiple neuropsychological
assessments, including memory, language functioning,
personality, and behavioral changes. Assessments of specific
biomarkers of AD are also being used to identify structural
changes within specific brain regions as well as measure levels
of Amyloid-β, tau, and phospho-tau (Alzheimer Association,
2019). Typically, the assessment of AD is based on clinical cut-off
points for neuropsychological assessments and biomarkers. This
technique allows a medical professional to identify those who
have symptoms of AD. While clinical cut-offs are important for
categorizing individuals with and without AD, it does not always
contribute to our understanding of the progression of AD or
identify individuals at risk of developing AD. Understanding
the progression of AD is important to developing preventative
interventions and earlier detection.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
study has collected longitudinal data from more than 50
sites in North America on “. . . elderly individuals with normal
cognition, mild cognitive impairment (MCI)” (Jack et al.,
2008). In total, the ADNI project has collected data using 292
measurements (see http://adni.loni.usc.edu/data-samples/adni-
data-inventory for a full list of items). These measurements
include diagnostic assessments; neuropsychological assessments;
bio-specimens; genetics; imaging—including different MRI and
PET imaging techniques; demographic and medical history; and
a participation record. Data were collected at 0, 6, 12, 24, and
36 months for participants in the normal cognition and mild
cognitive impairment groups (Jack et al., 2008). However, the AD
group’s data were only recorded at 0, 6, 12, and 24 months (Jack
et al., 2008). The main aims of the ADNI project are to improve
early detection and track disease progression using biomarkers
and advance early intervention, prevention, and treatment.

AD Diagnosis
The assessment and diagnosis of AD have primarily relied on
cut-off scores on neuropsychological assessments. For example,
the Clinical Dementia Rating Scale (Morris, 1997) can be used
to categorize individuals into differing levels of severity ranging
from normal cognitive functioning, questionable cognitive
impairment, questionable impairment, very mild dementia, mild
dementia, moderate dementia, and severe dementia (O’Bryant
et al., 2008). An advantage of utilizing categories for the Clinical
Dementia Rating Scale is that it reliably identifies individuals
with mild cognitive impairment (Duara et al., 2013). This allows
clinicians to use the results to identify patients who are suffering
from differing degrees of dementia severity. However, utilizing
the scale with cut-offs does not allow health professionals to track
the progression of the disease or identify at-risk patients before
the presentation of symptoms.

Other neuropsychological assessments such as the Functional
Activities Questionnaire (Pfeffer et al., 1982), the Alzheimer’s
Disease Assessment Scale (Mohs and Cohen, 1988), Clinical
Dementia Rating Scale (Morris, 1997), Everyday Cognition
Scale (Marshall et al., 2014), Montreal Cognitive Assessment
(Nasreddine et al., 2005), the Mini-Mental State Exam (Folstein

et al., 1975), and the Cognitive Change Index (Saykin et al.,
2006; Rattanabannakit et al., 2016) have also been used to
categorize cognitive impairment and AD. For instance, within
the ADNI, participants are classified with AD if they obtain a
score between 20 and 26 on the mini-mental state examination; a
score between 0.5 and 1.0 on the global clinical dementia rating,
a score between 1.0 and 9.0 for the summed box-score for the
clinical dementia rating (Shaw et al., 2009). These standardized
assessments are useful for diagnosing probable AD, with most
yielding good sensitivity, specificity, and classification scores.
That is, they reliably distinguish between individuals with mild
cognitive impairment and AD—making them good diagnostic
tools. However, utilizing these techniques is only useful for
determining probable AD. The use of cognitive assessments only
allows for a measure of current cognitive function and does
not indicate if an individual may progress from mild cognitive
impairment to severe cognitive impairment or AD. In the absence
of objective diagnostic assessments for AD, a positive diagnosis
is currently only determined through an autopsy (Perrin et al.,
2009; Shaw et al., 2009). However, recent advances in imaging
techniques (i.e., MRI and PET) and acquiring cerebral spinal fluid
have allowed researchers to identify potential biomarkers of AD
and what structural changes occur within specific brain regions
(e.g., hippocampus).

Shaw et al. (2009) collected cerebral spinal fluid from elderly
individuals with normal cognitive functioning, mild cognitive
impairment, and mild AD (classification were determined using
the mini-mental state examination and the Alzheimer’s Disease
Assessment Scale). The levels of Amyloid-β 1 to 42 peptide (Aβ

1−42), total tau (t-tau), and tau phosphorylated (p-tau) were
assessed to determine potential biomarkers of AD. To gain more
accurate cut-off points, models of the levels of Aβ 1−42, t-tau, and
p-tau were determined from cerebral spinal fluid samples from
autopsy-confirmed AD cases. The results indicated that Aβ 1−42

showed excellent sensitivity (96.4%) and specificity (76.9%) with
a clinical cut-off of 192 pg/ml; t-Tau showed acceptable sensitivity
(69.6%) and excellent specificity (92.3%) with a clinical cut-off of
93 pg/ml, and p-tau showed acceptable sensitivity (67.9%) and
specificity (73.1%) with a clinical cut-off of 23 pg/ml. Further,
the interaction between decreasing levels of Aβ and increasing
levels of p-tau have recently been implicated with neuronal death,
atrophy, and cognitive changes (Gomar et al., 2016; Veitch et al.,
2019). These results suggest that Aβ 1−42 and p-tau are the most
sensitive measures and best predictors of early diagnoses of AD.

The diagnosis of probable AD can also be assessed by
measuring specific biomarkers (i.e., Aβ, t-tau, &p-tau). However,
similar to the use of neuropsychological assessments, diagnosis
relies on patients exceeding a clinical threshold for the levels
of each biomarker. While biomarkers of AD appear to reliably
distinguish between those diagnosed with (i.e., sensitivity) and
without AD (i.e., specificity), some of the measures are still
below the recommended threshold of 85% for sensitivity and
specificity (Ronald and National Institute on Aging Working
Group, 1998; Frank et al., 2003; Shaw et al., 2009). Again, the
use of clinical cut-offs only provides clinicians with a measure
to differentiate between mild cognitive impairment and probable
AD based on particular biomarkers. Therefore, the use of cut-off
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scores is essential for diagnosis but does not identify at-risk
patients or to accurately track the progression of AD from mild
cognitive impairment to pre-clinical AD, probable AD, and a final
diagnosis of AD.

To promote the early detection of AD and to possibly identify
at-risk individuals, research should not solely rely on clinical cut-
off points, which are only useful once an individual presents
with neuropsychological symptoms or biomarkers associated
with probable AD. Secondly, there are criticisms of using cut-off
points on continuous neuropsychological assessments because
patients on either side of the cut-off are likely similar (Berlin et al.,
2014; Petersen et al., 2019).

Latent Class Analysis
Instead, Latent Class Analysis (LCA) can be used to identify
homogeneous subgroups of individuals who are externally
heterogeneous to other sub-groups (Berlin et al., 2014; Eppig
et al., 2017; Mooney et al., 2018; Petersen et al., 2019; Villeneuve
et al., 2019; Zammit et al., 2019a). Latent class analysis can
be used to identify homogenous subgroups of AD based on
psychological assessments (e.g., Scheltens et al., 2016; Eppig et al.,
2017; Zammit et al., 2019b). For example, Scheltens et al. (2016)
identified eight cognitive subtypes of AD within their sample
of probable AD patients (N = 938). The cognitive subtypes
included patients with mild-memory impairment, moderate
memory impairment, mild-visuospatial-language impairment;
moderate-visuospatial impairment, mild-executive functioning
impairment, moderate diffuse (cognitive impairment), and
severe-diffuse (cognitive impairment). The authors suggest that
the identification of cognitive subtypes highlights that AD is a
complex disease and rather than classifying individuals with AD,
we should consider differential diagnoses.

Zammit et al. (2019b) also used LCA to identify cognitive
subtypes of AD within participants from the Rush Memory
and Aging Project. Participants included in their study had
no dementia at baseline; displayed signs of dementia at
follow-up; were deceased at the time of the study, and had
neuropathological data available. Neuropathological data were
obtained from autopsies. Based on the neuropsychological
outcomes at baseline (i.e., Episodic-, Semantic-, working-, and
logical-memory; perceptual-and line orientation; and Perceptual
Speed–Symbol Digits Modalities Test) latent class analysis
was used to categories participants into 5 classes within two
categories (i.e., impaired cognition and intact cognition). The
impaired cognition classes included participants with mixed-
domains impairment, memory-specific impairment, and frontal
impairment. The intact cognition classes included participants
with average cognition and superior cognition.

The aim of Zammit’s (2019b) study was to identify if
neuropathological evaluations at autopsy (i.e., Aβ, tau,
hippocampal sclerosis, DNA-binding protein 43, Lewy
bodies, cerebral amyloid angiopathy, atherosclerosis, and
arteriolosclerosis) were predicted by the five classes of
cognitive impairment and intact cognition at baseline and
if the neuropathological measures differ between each
class. Their results showed that baseline measurements
on neuropsychological assessments were predictive of

neuropathology measured at autopsy, suggesting that
neuropsychological assessments are reliable for the assessment
and prognosis of cognitive impairments associated with AD.

One of the main findings of Zammit et al. (2019b) study was
that the biomarkers Aβ and Tau are strongly predictive of AD
and can possibly be used as an early detector. Indeed, abnormal
levels of Aβ and Tau were strongly associated with participants
within the mixed-domains class, the memory-specific class, and
the frontal impairment classes. With fewer abnormalities in the
average cognition class and the superior cognition class. That is,
abnormal Aβ and Tau were associated with impaired cognition
but not intact cognition. One of the limitations of their study
was that it did not account for individuals who might change
classes from baseline to follow–up. For example, participants
could progress from average intact cognition to memory-specific
impairment. As such, the results are only capturing the class an
individual belongs to at a single point in time.

Zammit et al. (2020) extended their previous work by using
latent transition analysis to identify participants within the
Rush Memory and Aging Project who transitioned from non-
impairment to cognitive impairment. A second aim was to
compare the classification of individuals within the LTA to the
clinical criteria of MCI. The results showed that across three
measurements (within 12 months) cognition remained relatively
stable. That is, participants did not regularly change between
the five classes of impairment; identified as mixed domains
impairment, memory-specific impairment, frontal Impairment,
average cognition, and superior cognition. However, of the 1,924
participants, 98 individuals did change membership class from
time 1 to time 2 (n = 62) and from time 2 to time 3 (n = 37).
A majority of the transitions were associated with a decline in
cognitive impairment at both time points. These results identified
that participants who changed classes had an 86% higher risk
of developing AD than those who did not change status.
Further, their study identified 541 participants with cognitive
impairment at time 2, 10.5% of these participants progressed to
developing dementia at time 3. While a majority of older adults
cognition remains stable, those who are experiencing some level
of cognitive impairment have an elevated risk of progressing to
developing dementia. The authors provide evidence that using
LTA is a robust tool to identify individuals at risk of cognitive
decline, identifying risk factors for interventions to target.

Zammit’s (2020) study was not without limitations.
Specifically, their LTA only used neuropsychological measures
of episodic memory, semantic memory, working memory, and
perceptual speed and orientation. With evidence suggesting that
neurological biomarkers are significant and sensitive predictors
of early diagnoses of AD (Shaw et al., 2009; Gomar et al., 2016;
Veitch et al., 2019), it is important to identify if biological
markers of AD can predict cognitive impairment transitions.
However, their paper does highlight that LCA and LTA are at the
forefront of research aiming to improve diagnostic methods and
to identify individuals at risk of progressing toward AD. Zammit
et al. (2020) also note the need to validate these methods through
replication of their findings, and efforts to identify homogeneous
classes of cognitive impairment using other neuropsychological
measures of AD. As mentioned earlier, recent studies using
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LTA have not included biomarkers of AD. Our study adds
a novel contribution to this emerging area by identifying if
neuropsychological measures and neurological biomarkers of
AD are indicators of individuals transitioning from healthy
individuals to individuals with mild cognitive impairment
and AD.

The Current Study
To our knowledge, Latent Transition Analyses (LTA) has not
been used to identify the neuropsychological and biomarkers
associated with the progression of AD in terms of patients
transitioning from one AD class to another. In the present study
rather than using a set cut off point to diagnose individuals as
Alzheimer’s patients, Latent Class Analysis (LCA) was used to
identify individuals that are more likely to develop dementia.
In addition, the focus of the analysis was on the development
of the individuals over time, that is, how an individual changes
class membership over time. In total, the following three research
aims were addressed in this study: (1) determine and describe
the number of classes that best characterize individuals with
respect to clinical measures and neurological biomarkers; (2)
compare the classification results obtained from the LCA and
the cut-offmethods, to identify the misdiagnosed individuals and
characterize these patients; and (3) explore the developmental
course of individuals with respect to clinical and neural measures.

Below, we first describe the ADNI dataset, which we have
utilized in the current study. Second, we provide details on our
latent class analysis and latent transition analysis. Following that,
we present the results from both latent class analysis and latent
transition analysis, respectively. Finally, we discuss our results in
terms of importance of our findings and clinical implications.

METHOD

ADNI Dataset
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD).

The ADNI dataset includes 2,132 participants: 512 controls,
and 353 with EMCI, 621 with LMCI, and 279 with SMC, and
367 AD patients. All participants were tested at 3 different times
annually. In all participants, ADNI dataset includes the following
measures for all participants: APOE4= Apolipoprotein E4 gene;
FDG= Fluorodeoxyglucose CDRSB= Clinical Dementia Rating
Sum of Boxes; ADAS11 = Alzheimer’s Disease Assessment
Scale (Cognitive Subscale), 11 item version; MMSE = Mini-
Mental State Examination; RAVimD = Rey Auditory Verbal
Learning Test (Immediate word recall score); MOCA =

The Montreal Cognitive Assessment; EcPtMm = Everyday
Cognition-Participant Self Report (8 memory items); EcPtLg =

Everyday Cognition-Participant Self Report (9 language items);
EcSPM= Everyday Cognition- Participant Study Partner Report
(8 Memory items); EcSPLg = Everyday Cognition- Participant
Study Partner Report (9 Language items); Hipc = Hippocampus
volume; Entor = entorhinal cortex volume; Fusif = fusiform
gyrus volume.

Statistical Analysis
A series of Latent Class Analysis (LCA), multivariate analysis of
variance, and Latent Transition Analyses (LTA) were conducted.
LTA is a longitudinal extension of LCA that explores changes in
class membership over time by capturing individual movements
in forward and backward directions across time points. This
statistical method is based on Markov chain models (Kaplan,
2008) and uses an LCA model as a measurement model.

Latent Class Analysis
Latent Class Analysis (Lazarsfeld and Henry, 1968; Clogg, 1981)
was employed to empirically identify the number of classes that
best characterize individuals with respect to clinical and neural
measures. LCA is a mixture model that classifies participants
into optimal classes on the basis of shared characteristics that
distinguish members of one class from another. Furthermore,
unlike traditional cluster analysis, which is based on heuristic or
distance procedures (Moustafa et al., 2018; Alashwal et al., 2019),
this approach is a model-based statistical method that allows the
LCA solution to be replicated with an independent sample (e.g.,
Nylund et al., 2007).

A commonly-used strategy to determine the optimal number
of classes in LCA is to estimate a series of models by progressively
increasing the number of classes and comparing the models
through fit statistics and tests of significance and the quality
of classification across models, as well as the usefulness and
the interpretability of the latent classes (e.g., Muthén and
Muthén, 2000; Vermunt and Magidson, 2002). To determine
the optimal number of classes for the sample, each model
was evaluated using three information criteria (IC), namely,
the Akaike Information Criterion (AIC; Akaike, 1987), the
Bayesian Information Criterion (BIC; Schwartz, 1978), sample
size adjusted BIC (SBIC; Sclove, 1987), and the Lo-Mendell-
Rubin likelihood ratio test (LMR; Lo et al., 2001). For AIC, BIC,
and SBIC, a lower value indicates a better model. For the LRT,
a significant p-value for a model with k classes followed by a
non-significant p-value for a model with k + 1 classes indicates
that the k class model is the best fitting model. The indices BIC,
SBIC, and LMR have been shown to identify the appropriate
number of groups within finite mixture models (e.g., Diallo et al.,
2016a,b; Diallo et al., 2017). Furthermore, the entropy criterion
was used to examine the quality of classification across models.
The normalized entropy values ranged from 0 to 1 with values
>0.80 representing a clear assignment of individuals to latent
classes. Finally, class size was also considered when determining
the optimal number of latent classes. Small classes (i.e., those that
contain <5% of the sample) were considered spurious classes,
as they are often associated with class over-extraction (Hipp and
Bauer, 2006).
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Latent Transition Analysis
LCA can be extended to accommodate longitudinal data through
LTA. LTA is a type of Markov model that studies how
individuals change membership in latent classes over time.
LTA links LCA variables at different time points to each other
using autoregressive models. A series of multinomial logistic
regression, where the latent class variable at time t is regressed on
the latent class variable at time t-1, is commonly used to estimate
transitions over time in latent class membership.

Analytical Steps
The statistical analyses involved three steps. In the first step,
we identified the optimal number of classes for each time point
separately. In the second step, individuals were assigned to their
most likely latent class (modal class assignment) and the latent
class variable at time 1 is compared to the clinical diagnostic
variable and misclassified patients are studied using multivariate
analysis of variance. The third step involved exploring the
developmental course of the patients with respect to clinical and
neural measures. That is, transition probabilities were used to
explore changes that had taken place in the latent classes. For
this analysis, measurement invariance was assumed to ensure
that the classes have the same meaning over time. Specifically,
measurement model parameters were set to be equal over time.
Hence, conditional item probabilities, item means, and item
variances for the LCA were constrained to be equal at the three
time points.

For this study, all models were estimated using a Full
Information Maximum Likelihood (FIML) procedure available
in Mplus 8.3 (Muthén and Muthén, 2019). FIML utilizes all
available information during the estimation process and provides
consistent and efficient population parameters (Enders, 2010).
Furthermore, all LCA models with continuous indicators were
estimated with residual variances of the outcomes constrained
to be equal across classes and under local independence within
classes assumption (i.e., indicators’ residual covariances within
classes were constrained to zero). All models with two classes or
more were estimated using 500 sets of random starting values, 50
iterations for each of these sets, and the 20 best sets of random
starting values associated with the highest likelihood values were
retained for the final optimization stage.

RESULTS

The first aim of this study was to determine the number of
classes that best characterize patients with respect to clinical
and neural measures. Table 1 provides an overview of patients’
characteristics with respect to clinical and neural measures. As
these data showed, there was substantial variability among the
patients on their clinical and neural measures. This variability
supports the value of using mixture methods to assess whether
the patients can be grouped into different classes based on their
clinical and neural measures.

Latent Class Analysis Results
Latent class models containing 1–7 classes at each time point
were fitted to the data. The model fit statistics are available in

Table 2. All LCAmodels converged at Time 1. The log-likelihood
increased while no minimum was found for the ICs as their
values decreased across the range of models considered. The
LMR pointed to the three-class solution since the test of the two-
class model against the three-class model has a p-value of 0.003,
suggesting rejection, whereas the test of the three-class against the
four-class has a p-value of 0.24. Further, an examination of the
LCA models indicated that the four- and five-class models each
included small classes that seemed to have splintered off from
larger classes in the three-class model. Therefore, a three-class
model was selected at time 1 based on the fit statistics (Muthen,
2004). The three-class model resulted in a log-likelihood value
of −11010.52 with 60 parameters, an AIC of 22141.04, a BIC
of 22481.49, a SBIC of 22290.86, and a high entropy value of
0.89. Moreover, the three-class solution satisfied the minimum
class size required to be useful (each comprised at least 5% of the
sample) and meaningful.

All models with fewer than seven classes converged at time 2.
Consequently, only model results for classes between one and six
were considered for further analysis. As in time 1, log-likelihood
values increased, no minimum was found for the ICs but no
solution was favored by the LRT. However, similar to the results
at time 1, the results showed that the four- and five-class models
each included small classes that seemed to have splintered off
from larger classes in the three-class model. Hence, based on the
interpretability and the usefulness of the classes, the three-class
solution was also selected as the optimal number of classes at time
2. Fit indices for the three-class solution at time 2 were as follows:
Log-likelihood = −6927.78, number of parameters = 60, AIC =

13975.57, BIC= 14303.75, SBIC= 14113.13, and entropy= 0.82.
Finally, all models with fewer than six classes converged

at time 3, whereas models with six classes and more did not
converge. Hence, only model results for classes between one and
five were considered for further analysis. Similar to time 1, log-
likelihood values increased, no minimum was found for the ICs,
whereas the LRT selected the three-class solution. Based on the
interpretability and the usefulness of the classes, the three-class
solution was also selected as the optimal number of classes at time
3. Fit indices for the three-class solution at time 3 were as follows:
Log-likelihood = −6984.23, number of parameters = 60, AIC =

14088.45, BIC= 14415.74, SBIC= 14225.12, and entropy= 0.81.

Explanation of Latent Class Solutions
Here, we describe the latent class solutions at the three time
points. Across the three time points, Class 1 showed a pattern
of low means on CDRSB, ADAS11, EcPtMm, EcPtLg, EcSPM,
EcSPLg, a pattern of high means on FDG, MMSE, RAVimD,
MOCA, Hipc, Entor, Fusif, and selected category zero of with
item probability>0.65. Class 1 is composed of 63% of the sample
at time 1, 59% at time 2, and 65% at time three. In contrast, Class
3 showed a pattern of low means on FDG, MMSE, RAVimD,
MOCA, Hipc, Entor, Fusif, a pattern of high means on CDRSB,
ADAS11, EcPtLg, EcSPM. We, therefore, interpreted this class
as the AD class. Class 3 is composed of 7% of the sample at
time 1, 10% at time 2, and 6% at time three. Class 2, however,
showed scores that overall were between Class 1 and Class 3.
Class 2 was composed of 30% of the sample at time 1, 31% at
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TABLE 1 | Descriptive statistics of the clinical and neural measures.

Variables Time 1 Time 2 Time 3

% N M SD % N M SD % N M SD

APOE4 1,726 1,210 1,189

Zero 53.10 55.02 50.10

One 37.00 36.26 38.01

Two 9.90 8.72 11.89

FDG 735 1.23 0.15 474 1.19 0.16 464 1.18 0.16

CDRSB 1,990 1.69 2.39 1,342 2.26 2.62 1,315 2.12 2.54

ADAS11 1,962 11.18 7.60 1,335 12.21 8.47 1,323 11.51 8.35

MMSE 1,978 27.07 3.32 1,326 26.30 3.90 1,325 26.49 3.91

RAVimD 1,956 36.33 13.47 1,340 32.41 13.56 1,316 34.01 13.23

MOCA 1,121 23.70 4.86 1,329 22.56 5.19 586 23.53 4.18

EcPtMm 1,144 1.98 0.72 537 2.12 0.73 589 2.06 0.73

EcPtLg 1,137 1.67 0.62 545 1.73 0.65 587 1.72 0.63

EcSPM 1,135 1.98 0.97 557 2.56 1.03 590 2.08 0.97

EcSPLg 1,138 1.60 0.80 557 1.82 0.91 588 1.67 0.79

Hipc 1,222 6676.92 1211.87 1,177 6609.89 1243.53 1,107 6625.67 1269.12

Entor 1,170 3437.39 810.34 1,105 3397.00 815.24 1,032 3414.71 838.77

Fusif 1,170 16942.23 2792.54 1,105 16886.15 2780.76 1,032 16877.08 2822.98

APOE4, Apolipoprotein E4 gene; FDG, Fluorodeoxyglucose; CDRSB, Clinical Dementia Rating Sum of Boxes; ADAS11, Alzheimer’s Disease Assessment Scale (Cognitive Subscale), 11

item version; MMSE, Mini-Mental State Examination; RAVimD, Rey Auditory Verbal Learning Test (Immediate word recall score); MOCA, The Montreal Cognitive Assessment; EcPtMm,

Everyday Cognition-Participant Self Report (8 memory items); EcPtLg, Everyday Cognition-Participant Self Report (9 language items); EcSPM, Everyday Cognition- Participant Study

Partner Report (8 Memory items); EcSPLg, Everyday Cognition- Participant Study Partner Report (9 Language items); Hipc, Hippocampus volume; Entor, entorhinal cortex volume;

Fusif, fusiform gyrus volume. N stands for number, and M is for mean.

time 2, and 29% at time three. The latent class estimated for
the three-class solution for the three time points are shown in
Figures 1–3. Finally, cross-tabulation analysis between the LCA
solution and the diagnostic variable at time 1 (Table 3) showed
that 37.5% of the patients from Class 1 were CN, 20.10% were
SMC, 19.60% were EMCI, 18.10% were LMCI, and 4.6% were
AD. Similar figures were 0.5, 0.9, 12.90, 53, and 32.60%; and 0.7,
0, 3.5, 28, and 67.80%, for Class 2 and Class 3, respectively. Class
1 can be seen as composed by individuals from CN, SMC, and
EMCI groups. Class 2 represents people from LMCI and from
AD groups with improved scores onmemory, clinical, and neural
measures. In contrast, Class 3 represents people from LMCI and
from AD groups with deteriorated scores on memory, clinical,
and neural measures. However, 63 individuals from Class 1 were
classified as AD individuals with the diagnosis condition.

Multivariate Analysis of Variance
Multivariate analysis of variance was used to compare the group
of 63 individuals with two groups: Class 1 from the LCA
without the 63 individuals and the AD individuals from the
diagnoses variable without the 63 individuals. The results of
the multivariate analysis of variance with the 13 clinical and
neural measures as dependent variables resulted in multivariate
F statistics of F(13,1,636) = 163.85, p < 0.001, partial η

2
= 0.57.

Detailed analyses revealed that group differences were significant
(0.001< p < 0.01). The mean of the 63 individuals on the clinical
and neural measures were between the mean of Class 1 without
the 63 individuals and those from the AD individuals from the

diagnoses variable without the 63 individuals (Table 4). The LCA
classified the 63 individuals within Class 1 as their condition
probability of belonging to this class was higher than those of
belonging to the other two classes (with conditional probabilities
of 0.65, 0.27, and 0.08 for Class 1, 2, 3, respectively). LTA will be
used to study the development of these individuals over time.

Latent Transition Analysis Results
The LTA was conducted under the measurement invariance
assumption. Consequently, measurement model parameters
were set to be equal over time. This ensured that the classes
have the samemeaning over time. Transition probabilities for the
whole sample are presented in Table 5 and provide information
on patient’s status at time 2 given their latent status at time 1,
and patient’s status at time 3 given their latent status at time
2.The results showed most individuals stayed in the same class
from time 1 to time 2 but some changes in class membership for
some individuals were seen from time 2 to time 3. Individuals
who were in the Class 1 at time 1 had a 0.99 probability of
remaining there at time 2 (0.88 for Class 2 and 0.98 for Class
3, respectively). The probability (0.04) that individuals would
move from the Class 2 to Class 1 by time 2 was not statistically
significantly. Similarly, the probability (0.07) that individuals
would move from the Class 2 to the Class 1 by time 2 was
not significantly different from zero. The probability (0.02) that
individuals would move from the Class 3 to the Class 2 by time 2
was not statistically significant either. There was, however, a 0.10
probability that individuals would transition fromClass 2 to Class
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TABLE 2 | Fit statistics for model specifications at time point 1, time point 2, and time point 3.

Model Loglikelihood #Free parameters AIC BIC SBIC p LMR Entropy

Time point 1

Two-Class −12514.64 44 25117.28 25366.95 25227.15 <0.001 0.88

Three-Class −11010.52 60 22141.04 22481.49 22290.86 0.003 0.89

Four-Class −10133.10 76 20418.21 20849.44 20607.98 0.24 0.89

Five-Class −9766.25 92 19716.50 20238.52 19946.22 0.189 0.87

Six-Class −9492.06 108 19200.12 19812.93 19469.80 0.131 0.83

Seven-Class −9279.09 124 18806.18 19509.77 19115.81 0.62 0.80

Time point 2

Two-Class −7936.22 44 15960.44 16201.10 16061.32 <0.001 0.81

Three-Class −6927.78 60 13975.57 14303.75 14113.13 <0.001 0.82

Four-Class −6513.27 76 13178.53 13594.23 13352.78 0.006 0.83

Five-Class −6256.23 92 12696.45 13199.66 12907.38 0.004 0.75

Six-Class −6087.00 108 12390.00 12980.73 12637.62 0.031 0.77

Time point 3

Two-Class −7936.56 44 15961.11 16201.12 16061.33 <0.001 0.79

Three-Class −6984.23 60 14088.45 14415.74 14225.12 0.004 0.81

Four-Class −6549.12 76 13250.23 13664.79 13423.35 0.514 0.78

Five-Class −6374.21 92 12932.43 13434.26 13141.99 0.353 0.71

#, number; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; SBIC, Sample Size Adjusted BIC; p LMR, p- values for the Lo-Mendell-Rubin Likelihood ratio test for k

vs. k+1Classs. LCA models converged at Time 1. The log-likelihood increased while no minimum was found for the ICs as their values decreased across the range of models considered.

1 from time 2 to time 3. Multivariate analysis of variance showed
that individuals who moved from Class 2 to Class 1 from time 2
to time 3 had significantly higher means than other individuals
of Class 2 on FDG, MMSE, RAVimD, MOCA, EcPtLg, Hipc,
Entor, and Fusif. But these groups of individuals had significantly
lower on CDRSB, ADAS11, EcPtMm, EcSPM. No significant
mean difference was found between the two groups on EcSPLang.
Finally, the small number of misclassified individuals prevented
us from computing the transition probabilities since LTA rely on
larger sample sizes to be trustworthy. However, descriptive data
show that at time 2, 42 (66.7%) of the 63 individuals that were
classified in Class 1 from the LCA, but AD individuals by the
diagnosis variable, stayed in the Class 1 at time 2, 18 (28.60%)
moved to the Class 2, and 3 (4.80%) to the AD class. Similar
figures were also found at time 3.

DISCUSSION

The aim of this study was to use LCA to identify and describe the
number of classes that best characterize CN, SMC, EMCI, LMCI,
and AD individuals with respect to clinical and neural measures.
Our second aimwas to compare the classification results obtained
from the LCA to more traditional cut-off methods for classifying
individuals with dementia. This can help us identify and
characterize potentially misdiagnosed individuals. Finally, we
used LTA to investigate changes in class membership over time.
Our results showed that while there was substantial variability
among individuals on their clinical and neural measures, the use
of LCA with mixture methods to assess grouping individuals
into optimal classes yields meaningful results. We confirm that

using LCA, observing model fit indices, and entropy criterion
were effective for selecting the optimal number of classes of
individuals. Our results identified three classes of individuals
with the following characterization: 37.5% of the individuals
from Class 1 were CN, 20.10% with SMC, 19.60% with EMCI,
18.10% with LMCI, and 4.6% (63 individuals) with AD. Similar
figures were 0.5, 0.9, 12.90, 53, and 32.60%; and 0.7, 0, 3.5,
28, and 67.80%, for Class 2 and Class 3, respectively. Further,
our results showed that the LCA identified 63 individuals that
were potentially misdiagnosed with AD. Indeed, based on the
clinical and neural measures, it was deemed more probable that
the misdiagnosed individuals be classified within the Class 1
instead of Class 2 or 3. Further, LTA did not show any significant
change in class over time. Most individuals remained within their
initial class (i.e., determined at baseline) and did not show a
transition from Class 1 to Class 2, or from Class 2 to Class 3
between any time points. These results indicate that classifying
individuals based on their cognitive and pathological parameters
into different categories is an essential step toward understanding
dementia and AD. To our knowledge, this is the first study to
successfully use neuropsychological assessments and biomarkers
of AD (e.g., Fluorodeoxyglucose, entorhinal cortex volume, and
fusiform gyrus volume) to classify and predict individuals likely
to transition fromMCI to AD.

Similar to previous results, we identified multiple classes of
cognitive impairment (Scheltens et al., 2016; Zammit et al.,
2019b, 2020). For example, the results from our LCA identified
3 classes of individuals at each time point: Class 1, which is
more healthy than the other classes representing 63, 59, and
65% of the sample at, respectively, time 1, 2, and time 3; Class
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FIGURE 1 | Three-class solutions for neurological and neuroimaging measures at time 1.

FIGURE 2 | Three-class solutions for neurological and neuroimaging measures at time 2.

2, which lies in between Class 1 and 3, representing ∼30% of
the sample across the three time points; and Class 3, which
include the least healthy individuals, representing 7, 10, and
6% of the sample at time 1, 2, and time 3, respectively. In
other words, our LCA results reveal 3 classes that most likely
match healthy individuals, individuals with MCI, and individual
with AD, respectively. In comparison, Zammit et al. (2019b)
classified participants into 5 classes within two categories (i.e.,
impaired and intact cognition) and Scheltens et al. (2016)
classified participants into eight cognitive subtypes of AD. While
there are differences in the number of classes identified with
our results compared to others (Scheltens et al., 2016; Zammit
et al., 2019b), it is important to note that the previous studies
only utilized participants diagnosed with probable AD using
neuropsychological assessments. Our research extends these
findings by indicating that there are distinct classes of individuals
who can be categorized as being healthy, experiencing MCI,

and probable AD by using neuropsychological assessments and
neurological biomarkers of AD. This has important clinical
implications as individuals can be classified as experiencing
different kinds of cognitive impairment early on (i.e., at baseline)
and this categorization does not change significantly across time.
Consistent with recent findings (i.e., Zammit et al., 2020)., we
also showed that using LCA to classify individuals with MCI
or AD remains relatively stable over time (as indicated by
LTA) and that LCA might better categorize and reduce the risk
of misdiagnosis.

Our study has replicated previous findings that LCA
and LTA can be used to identify homogeneous classes of
cognitive impairment (Zammit et al., 2020). However, we
have uniquely identified that neuropsychological measures of
AD and the associated neurological biomarkers are indicators
of an individual’s class membership and can predict their
likelihood to transition between the healthy class (Class 1),
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FIGURE 3 | Three-class solutions for neurological and neuroimaging measures at time 3.

TABLE 3 | Cross tabulation of diagnostic variable and latent class variable at Time

1.

Latent class solution at Time 1

Diagnostic variable

at time 1

Class 1 Class 2 Class 3

CN Frequency 508 3 1 512

Row % 99.2% 0.6% 0.2%

Column % 37.5% 0.5% 0.7%

SMC Frequency 273 6 0 279

Row % 97.8% 2.2% 0.0%

Column % 20.1% 0.9% 0.0%

EMCI Frequency 266 82 5 353

Row % 75.4% 23.2% 1.4%

Column % 19.6% 12.9% 3.5%

LMCI Frequency 245 336 40 621

Row % 39.5% 54.1% 6.4%

Column % 18.1% 53.0% 28.0%

AD Frequency 63 207 97 367

Row % 17.2% 56.4% 26.4%

Column % 4.6% 32.6% 67.8%

1,355 634 143

AD, Alzheimer’s disease; CN, controls; EMCI, early-stage mild cognitive impairment;

LMCI, late-stage mild cognitive impairment; SMC, subjective memory complains.

the MCI class (Class 2), and the AD class (Class 3). As
mentioned earlier, recent studies using LTA have only utilize
neuropsychological assessments of AD or MCI (e.g., Scheltens
et al., 2016; Eppig et al., 2017; Zammit et al., 2019b, 2020).
Our study adds a novel contribution to this emerging area
by identifying that neurological biomarkers of AD can also
be used to correctly classify individuals with MCI and AD
and identify those at risk of transitioning from healthy

cognitive function, to mild-cognitive impairment, and finally
to AD.

A comparison of the classification results obtained from
the LCA with the cutoff methods at Time 1 (baseline)
revealed a group of 63 misclassified individuals. This group of
individuals were classified as healthy individuals by the LCA,
but were classified as AD by using clinical cut-off scores in
neuropsychological assessments. The multivariate analysis of
variance revealed that the misclassified individuals’ scores on
the clinical and neuropsychological assessments and neurological
biomarkers were bounded between the mean of the Healthy
individuals (i.e., Class 1) from the LCAwithout the 63 individuals
and those from the AD individuals (i.e., Class 3) from the
cut-off method without the 63 individuals. However, further
analysis showed that it was more probable that the misclassified
participants belonged to the healthy class (i.e., Class 1) rather
than the MCI class (Class 2). As LCA takes into account several
clinical and neural variables, longitudinal data, as well as also
considers different groups of participants, it is likely to be more
accurate than standard clinical cut-off methods, which often
relies on one measure and does not compare data across different
groups of participants.

There is a large discrepancy between the two methods
of classification (i.e., clinical assessment vs. statistical), and
perhaps reinforces the criticisms of using cut-off points on
continuous neuropsychological assessments. Our results show
that participants either side of the cut-off are similar (Berlin et al.,
2014; Petersen et al., 2019). That is, based on clinical cut-off
scores, some healthy participants were identified as similar to AD
individuals, which resulted in misclassification. By using LCA,
we have identified homogeneous sub-groups of individuals who
are externally heterogeneous to other sub-groups (Berlin et al.,
2014; Eppig et al., 2017; Mooney et al., 2018; Petersen et al.,
2019; Villeneuve et al., 2019; Zammit et al., 2019a). For example,
the healthy class (i.e., Class 1) is externally heterogeneous
compared to the MCI class (Class 2) and the AD class (i.e.,
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TABLE 4 | Analysis of variance results with mean and standard deviations.

The 63 patients (MD) Diagnostics minus the 63 (DG) Healthy minus the 63 (HT) d Contrasts

Measures

FDG M (SD) 1.26 (0.13) 1.06 (0.15) 1.29 (0.12) 0.29*** MD = HT > DG

CDRSBM (SD) 1.69 (2.05) 4.87 (2.45) 0.52 (0.93) 0.59*** DG > MD > HT

ADAS11M (SD) 1.14 (0.61) 2.16 (0.90) 0.75 (0.39) 0.52*** DG > MD > HT

MMSEM (SD) 2.70 (0.28) 2.24 (0.34) 2.87 (0.15) 0.52*** HT > MD > DG

RAVimDM (SD) 3.58 (1.26) 2.17 (0.98) 4.30 (1.13) 0.36*** HT > MD > DG

MOCAM (SD) 2.30 (0.43) 1.70 (0.47) 2.54 (0.30) 0.48*** HT > MD > DG

EcPtMmM (SD) 2.09 (0.74) 2.27 (0.70) 1.86 (0.66) 0.05*** DG > MD > HT

EcPtLgM (SD) 1.77 (0.66) 1.84 (0.66) 1.60 (0.57) 0.02*** DG > MD > HT

EcSPMM (SD) 2.08 (0.83) 2.99 (0.76) 1.59 (0.61) 0.41*** DG > MD > HT

EcSPLgM (SD) 1.70 (0.69) 2.36 (0.79) 1.31 (0.46) 0.36*** DG > MD > HT

HipcM (SD) 0.70 (0.12) 0.56 (0.11) 0.72 (0.10) 0.28*** MD = HT > DG

EntorM (SD) 0.34 (0.07) 0.27 (0.07) 0.37 (0.07) 0.26*** HT > MD > DG

Fusif M (SD) 1.71 (0.25) 1.49 (0.28) 1.78 (0.26) 0.16*** HT > MD > DG

***p < 0.001. All variables are defined in the text and in the captions of prior tables.

TABLE 5 | Transition probabilities from Time 1 to Time 2 and from Time 2 to Time 3.

T2 T3

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

T1 Class 1 0.99a* 0.01 0.00 T2 Class 1 0.93* 0.07 0.00

Class 2 0.04b 0.88* 0.07 Class 2 0.10* 0.85* 0.05

Class 3 0.00 0.02 0.98* Class 3 0.00 0.09 0.91*

aRead as 99% of patients who were in class 1 at time 1 were predicted to remain in class 1 at time 2. b4% of patients who were in class 2 at time 1 were predicted to transition to class

1 at time 2.

*probabilities significantly different from 0 at p < 0.05.

Class 3). Conversely, the AD class (i.e., Class 3) is relatively more
homogenous (i.e., after identifying misdiagnosed individuals)
and externally heterogeneous compared to the healthy class and
MCI class.

The LTA results were used to examine the individuals’
transition probabilities with respect to clinical assessments,
neurological measures, and neurological biomarkers to explore
changes in the latent classes over time. The LTA results showed
that individuals in the Healthy (i.e., Class 1) and AD (i.e., Class
3) classes were stable (with a probability >0.90 of staying in
the same class over time). The results show that the transition
from Healthy to AD classes was non-existent. This is consistent
with the nature of the AD as a progressive disease. Individuals
at early stages do not exhibit symptoms of AD. However,
there is an insignificant probability for the individuals in the
healthy class to transition to the MCI class (0.01 from time 1
to time 2 and 0.07 from time 2 to time 3). Furthermore, the
results confirm the nature of AD as a neurodegenerative disease
(Alzheimer Association, 2019). For example, at no time-point did
individuals who are in the AD class show cognitive improvement
by transitioning to the Healthy class or MCI class.

In contrast, individuals from the MCI class have non-zero
probabilities moving to other classes over time. However, only
the probability of transitioning to the Healthy class from time

2 to time 3 was significant (with a probability of 0.10). That
is, some individuals classified within the MCI class (Class
2) showed cognitive improvement from time 2 to time 3.
This further emphasizes the differences between MCI and AD.
While AD is a regressive disease that does not allow cognitive
improvements, MCI is not necessarily degenerative. As such, we
should be cautious about suggesting individuals with MCI are
on a progression toward AD. As we only observed movement
from the MCI class into the healthy class, it is less probable that
individuals with MCI will progress into AD. Therefore, based
on our findings, any transition from the MCI class is likely to
resemble cognitive improvement rather than decline. It is worth
noting that we did not identify the characteristics that predict the
movement of individuals from the MCI class. Further research is
needed to investigate possible factors that may contribute to this
movement, either to the Healthy or AD class.

LIMITATIONS

It is important to note that one main advantage of traditional
rule-based diagnostic methods (as often used by most clinicians
and doctors) is easy utilization in the everyday clinical setting.
However, our methods used here are more complex and
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require applying analytical and statistical method to be able
to reach a more robust diagnosis. Accordingly, because of its
complexity (e.g., conducting the analysis and interpretations
of results), it is expected that latent class analysis methods
may not be widely used. However, we also agree that it is
exactly LCA complexity over the traditional discrete diagnostic
methods (e.g., surveys) that allow it to be a better predictor
of class membership (e.g., an individual is healthy, has mild
cognitive impairment, or has Alzheimer’s disease). This is due
to the fact that rule-based diagnostic methods are inherently
additive, as they rely on discrete methods. However, LCA is
a multivariate approach that attempts to find complex joint
probability distributions that create a richer risk profile which
is difficult to define using discrete rule-based decision tools and
diagnostic methods.

CONCLUSION

In conclusion, this study demonstrated that latent class analysis
can be used to classify participants within the ADNI project
into three distinct classes: Healthy, MCI, or AD. We argue
that LCA is a more suitable method for classifying individuals
with SMC, MCI, and AD rather than using clinical cut-off
measures. This is due to LCA’s ability to create internally
homogenous and externally heterogeneous sub-groups. This
technique might help reduce the number of misclassifications
of individuals incorrectly diagnosed with probable AD—as
demonstrated by the misclassified individuals in our study.
By using latent transition analysis, we showed that individuals
classified as healthy or with AD had a high probability of
staying in the same class over time. However, it was more
probable for individuals to transition from the MCI class
to the healthy class. Our results emphasize that AD is a
neurodegenerative syndrome, with individuals within the AD
class showing no evidence of cognitive improvement over
time. However, individuals with MCI can show improvement
over time. Therefore, we argue that LCA can be used to
differentiate between individuals with AD and that this diagnosis
remains stable across time and produces fewer misdiagnoses
than using clinical cut-offs. Robust methods should be used
to accurately diagnose patients and to identify individuals at a
highest risk of developing AD. While using cut-off scores using
traditional discrete diagnostic methods are quicker, our study
has shown that LCA can provide a more accurate prediction
for classifying individuals with SMC, MCI, and AD. While the
time requirement to conduct LCA is burdensome, ensuring
an accurate diagnosis for patients should be a prioritized.
Especially given the severity and neurodegenerative nature of AD
(Alzheimer Association, 2019). Using LCA and LTA can provide
more accurate diagnoses and improve the outcomes for patients.

Clinicians should consider alternative diagnostic methods for
AD instead of relying solely on the clinical cut-off measures on
neuropsychological assessments.
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